Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
PLoS Pathog ; 20(2): e1012037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394338

RESUMO

Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.


Assuntos
Orthoreovirus de Mamíferos , Animais , Orthoreovirus de Mamíferos/genética , Regiões 3' não Traduzidas/genética , Fases de Leitura Aberta/genética , RNA Viral/genética , Mutação , Genoma Viral , Mamíferos
2.
PLoS Pathog ; 20(1): e1011637, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206991

RESUMO

Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.


Assuntos
Vesículas Extracelulares , Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Animais , Camundongos , Humanos , Células CACO-2 , Reoviridae/genética , Orthoreovirus Mamífero 3/genética , Mamíferos
3.
Microbiol Spectr ; 12(3): e0176223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289932

RESUMO

Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Camundongos , Animais , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , República da Coreia , Primatas
4.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931840

RESUMO

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Assuntos
Lagomorpha , Orthoreovirus de Mamíferos , Animais , Cães , Camundongos , Lagomorpha/metabolismo , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , Genômica
5.
Virology ; 587: 109871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634292

RESUMO

Mammalian orthoreovirus (MRV) is an oncolytic virus that has been tested in over 30 clinical trials. Increased clinical success has been achieved when MRV is used in combination with other onco-immunotherapies. This has led the field to explore the creation of recombinant MRVs which incorporate immunotherapeutic sequences into the virus genome. This work focuses on creation and characterization of a recombinant MRV, S1/HER2nhd, which encodes a truncated σ1 protein fused in frame with three human epidermal growth factor receptor 2 (HER2) peptides (E75, AE36, and GP2) known to induce HER2 specific CD8+ and CD4+ T cells. We show S1/HER2nhd expresses the σ1 fusion protein containing HER2 peptides in infected cells and on the virion, and infects, replicates in, and reduces survival of HER2+ breast cancer cells. The oncolytic properties of MRV combined with HER2 peptide expression holds potential as a vaccine to prevent recurrences of HER2 expressing cancers.


Assuntos
Neoplasias , Orthoreovirus de Mamíferos , Animais , Humanos , Orthoreovirus de Mamíferos/genética , Proteínas Recombinantes de Fusão/genética , Peptídeos , Mamíferos
6.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143369

RESUMO

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Orthoreovirus/genética , Indonésia , Malásia , Orthoreovirus de Mamíferos/genética , Mamíferos
7.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
8.
J Virol ; 97(5): e0058523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37167564

RESUMO

Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.


Assuntos
Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Internalização do Vírus , Capsídeo/metabolismo , Linhagem Celular , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus Mamífero 3/fisiologia
9.
Arch Virol ; 168(6): 165, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210458

RESUMO

Throughout East Asia, Europe, and North America, mammalian orthoreovirus (MRV), for which bats have been proposed to be natural reservoirs, has been detected in a variety of domestic and wild mammals, as well as in humans. Here, we isolated a novel MRV strain (designated as Kj22-33) from a fecal sample from Vespertilio sinensis bats in Japan. Strain Kj22-33 has a 10-segmented genome with a total length of 23,580 base pairs. Phylogenetic analysis indicated that Kj22-33 is a serotype 2 strain, the segmented genome of which has undergone reassortment with that of other MRV strains.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Japão , Filogenia , Europa (Continente) , Orthoreovirus/genética , Genoma Viral
10.
Curr Protoc ; 3(4): e716, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37039704

RESUMO

Mammalian reoviruses are pathogens that cause gastrointestinal and respiratory infections. In humans, the mammalian reoviruses usually cause mild or subclinical disease, and they are ubiquitous, with most people mounting immunity at a young age. Reoviruses are prototypic representations of the Reoviridae family, which contains many highly pathogenic viruses. This article describes techniques for culturing mouse fibroblast L929 cell lines, the preferred cell line in which most mammalian reovirus studies take place. In addition, mammalian reovirus propagation, quantification, purification, and storage are described. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Propagation of mammalian reoviruses in cell culture from virus stocks Alternate Protocol 1: Large-scale propagation (and purification) of mammalian reoviruses in cell culture from virus stocks Basic Protocol 2: Quantification of mammalian reoviruses by plaque assay with neutral red staining Alternate Protocol 2: Quantification of mammalian reoviruses by plaque assay with crystal violet staining Basic Protocol 3: Storage of mammalian reoviruses Support Protocol 1: Growth and maintenance of mouse L929 cells Support Protocol 2: Plating L929 cells.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Humanos , Animais , Camundongos , Linhagem Celular , Técnicas de Cultura de Células/métodos , Mamíferos
11.
DNA Cell Biol ; 42(6): 289-304, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015068

RESUMO

Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.


Assuntos
Vírus Oncolíticos , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Animais , Humanos , Orthoreovirus/genética , Reoviridae/genética , Orthoreovirus de Mamíferos/genética , Vírus Oncolíticos/genética , Mamíferos
12.
Infect Genet Evol ; 110: 105421, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871695

RESUMO

Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.


Assuntos
Orthoreovirus de Mamíferos , Animais , Humanos , Filogenia , Sequência de Bases , Sequência de Aminoácidos , Orthoreovirus de Mamíferos/genética , Genoma Viral , Genótipo , Mamíferos
13.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851777

RESUMO

The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data.


Assuntos
Braquiúros , Orthoreovirus de Mamíferos , Reoviridae , Animais , Humanos , Ecossistema , Filogenia , Estruturas Genéticas , Variação Genética
14.
J Med Virol ; 95(2): e28492, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633204

RESUMO

Mammalian orthoreovirus (MRV) infects many mammalian species including humans, bats, and domestic animals. To determine the prevalence of MRV in bats in the United States, we screened more than 900 bats of different species collected during 2015-2019 by a real-time reverse-transcription polymerase chain reaction assay; 4.4% bats tested MRV-positive and 13 MRVs were isolated. Sequence and phylogenetic analysis revealed that these isolates belonged to four different strains/genotypes of viruses in Serotypes 1 or 2, which contain genes similar to those of MRVs detected in humans, bats, bovine, and deer. Further characterization showed that these four MRV strains replicated efficiently on human, canine, monkey, ferret, and swine cell lines. The 40/Bat/USA/2018 strain belonging to the Serotype 1 demonstrated the ability to infect and transmit in pigs without prior adaptation. Taken together, this is evidence for different genotypes and serotypes of MRVs circulating in US bats, which can be a mixing vessel of MRVs that may spread to other species, including humans, resulting in cross-species infections.


Assuntos
Quirópteros , Cervos , Orthoreovirus de Mamíferos , Orthoreovirus , Animais , Cães , Humanos , Bovinos , Estados Unidos , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Furões
15.
J Vet Med Sci ; 85(2): 185-193, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574999

RESUMO

Biosecurity enhancement contributes to the reduction of various microbial pathogens. Mammalian orthoreoviruses (MRVs) which are increasingly recognized as potentially serious problems on swine industry were used as indicators of biosecurity enhancement on two pig farms. Twelve MRVs were detected and isolated from fecal specimens of healthy pigs collected from one of the two farms in Japan. By sequencing based on the partial S1 gene, MRV isolates were classified as MRV1 and MRV2. Additionally, the virucidal activities of disinfectants toward the isolated MRV1 were evaluated using quaternary ammonium compound (QAC) diluted 500 times with water (QAC-500), 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, QAC diluted with 0.17% FdCa(OH)2 solution (Mix-500), sodium hypochlorite at 100 or 1,000 parts per million (ppm) of total chlorine (NaClO-100 or NaClO-1000, respectively). To efficiently inactivate MRV1 (≥3 log10 reductions), 0.17% FdCa(OH)2, Mix-500 and NaClO-1000 required 5 min, whereas it took 30 min for QAC-500. The number of MRV detections has decreased over time, after using Mix-500 for disinfection on the positive farm. These results suggest that different serotypes of MRVs are circulating among pigs, and that the occurrence of MRVs in the farms decreased consequent to more effective disinfection.


Assuntos
Desinfetantes , Orthoreovirus de Mamíferos , Animais , Suínos , Desinfetantes/farmacologia , Orthoreovirus de Mamíferos/genética , Japão/epidemiologia , Hipoclorito de Sódio , Hidróxido de Cálcio , Compostos de Amônio Quaternário , Mamíferos
16.
Viruses ; 14(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36146702

RESUMO

Mammalian orthoreoviruses (MRVs) are increasingly reported to cause various diseases in humans and other animals, with many possibly originating from bats, highlighting the urgent need to investigate the diversity of bat-borne MRVs (BtMRVs). Here, we report the detection and characterization of a reassortant MRV that was isolated from a bat colony in Xinjiang, China. The BtMRV showed a wide host and organ tropism and can efficiently propagate the cell lines of different animals. It caused mild damage in the lungs of the experimentally inoculated suckling mice and was able to replicate in multiple organs for up to three weeks post-inoculation. Complete genome analyses showed that the virus was closely related to MRVs in a wide range of animals. An intricate reassortment network was revealed between the BtMRV and MRVs of human, deer, cattle, civet and other bat species. Specifically, we found a bat-specific clade of segment M1 that provides a gene source for the reassortment of human MRVs. These data provide important insights to understand the diversity of MRVs and their natural circulation between bats, humans, and other animals. Further investigation and surveillance of MRV in bats and other animals are needed to control and prevent potential MRV-related diseases.


Assuntos
Quirópteros , Cervos , Orthoreovirus de Mamíferos , Orthoreovirus , Animais , Bovinos , China/epidemiologia , Humanos , Camundongos , Orthoreovirus/genética , Filogenia , Análise de Sequência de DNA
17.
Arch Virol ; 167(12): 2643-2652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114317

RESUMO

Mammalian orthoreoviruses (MRVs) are non-enveloped double-stranded RNA viruses with a broad host range. MRVs are prevalent worldwide, and in Japan, they have been isolated from various hosts, including humans, dogs, cats, wild boars, and pigs, and they have also been found in sewage. However, Japanese porcine MRVs have not been genetically characterized. While investigating porcine enteric viruses including MRV, five MRVs were isolated from the feces of Japanese pigs using MA104 cell culture. Genetic analysis of the S1 gene revealed that the Japanese porcine MRV isolates could be classified as MRV-2 and MRV-3. Whole genome analysis showed that Japanese porcine MRVs exhibited genetic diversity, although they shared sequence similarity with porcine MRV sequences in the DDBJ/EMBL/GenBank database. Several potential intragenetic reassortment events were detected among MRV strains from pigs, sewage, and humans in Japan, suggesting zoonotic transmission. Furthermore, homologous recombination events were identified in the M1 and S1 genes of Japanese porcine MRV. These findings imply that different strains of Japanese porcine MRV share a porcine MRV genomic backbone and have evolved through intragenetic reassortment and homologous recombination events.


Assuntos
Orthoreovirus de Mamíferos , Humanos , Suínos , Animais , Cães , Orthoreovirus de Mamíferos/genética , Filogenia , Fezes , Especificidade de Hospedeiro , Variação Genética , Mamíferos
18.
J Virol ; 96(14): e0091722, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867576

RESUMO

Mammalian orthoreovirus (reovirus) is a double-stranded RNA (dsRNA) virus which encapsidates its 10 genome segments within a double-layered viral particle. Reovirus infection triggers an antiviral response in host cells which serves to limit viral replication. This antiviral response is initiated by recognition of the incoming viral genome by host sensors present in the cytoplasm. However, how host sensors gain access to the reovirus genome is unclear, as this dsRNA is protected by the viral particle proteins throughout infection. To initiate infection, reovirus particles are endocytosed and the outer viral particle layer is disassembled through the action of host proteases. This disassembly event is required for viral escape into the cytoplasm to begin replication. We show that endosomal proteases are required even late in infection, when disassembly is complete, to induce an immune response to reovirus. Additionally, counter to dogma, our data demonstrate that at least some viral dsRNA genome is exposed and detectable during entry. We hypothesize that some proportion of reovirus particles remain trapped within endosomes, allowing for the breakdown of these particles and release of their genome. We show that rapidly uncoating mutants escape the endosome more rapidly and induce a diminished immune response. Further, we show that particles entering through dynamin-independent pathways evade detection by host sensors. Overall, our data provide new insight into how genomes from entering reovirus particles are detected by host cells. IMPORTANCE Viruses must infect host cells to replicate, often killing the host cell in the process. However, hosts can activate defenses to limit viral replication and protect the organism. To trigger these host defenses to viral infections, host cells must first recognize that they are infected. Mammalian orthoreovirus (reovirus) is a model system used to study host-virus interactions. This study identifies aspects of host and virus biology which determine the capacity of host cells to detect infection. Notably, entry of reovirus into host cells plays a critical role in determining the magnitude of immune response triggered during infection. Mutants of reovirus which can enter cells more rapidly are better at avoiding detection by the host. Additionally, reovirus can enter cells through multiple routes. Entry through some of these routes also helps reovirus evade detection.


Assuntos
Imunidade Inata , Infecções por Reoviridae , Reoviridae , Animais , Fatores de Restrição Antivirais/imunologia , Linhagem Celular , Orthoreovirus de Mamíferos , Peptídeo Hidrolases , RNA de Cadeia Dupla/genética , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Proteínas Virais , Replicação Viral
19.
J Virol Methods ; 308: 114574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798198

RESUMO

Fluorescence-guided surgery (FGS) is a useful method for removing invasive tumor tissues. For this, near-infrared (NIR) fluorescence probes are suitable for visualizing cancer cells due to their low autofluorescence, and an oncolytic mammalian orthoreovirus (MRV) expressing an NIR fluorescent protein is expected to be a novel tool for FGS. In this study, we identified the optimal insertion site of the NIR fluorescent protein gene iRFP720 (915 nt) in the MRV genome. We constructed genome plasmids for the L1, M1, and S2 segments, where a gene cassette comprising iRFP720 and T2A self-cleaving peptide was inserted in the 5' or 3' region of each segment. Through virus recovery, the recombinant MRV with the gene cassette at the M1 segment's 3' end, T3D-L(M1/3'iRFP720), was capable of replication and passaging with bright NIR fluorescence. However, the replication of T3D-L(M1/3'iRFP720) was approximately 1,000-fold lower than that of the wild-type virus. T3D-L(M1/3'iRFP720) production improved due to the transfection of a fusion-associated small transmembrane protein gene of fusogenic reovirus. Further, fluorescence signals were detected in T3D-L(M1/3'iRFP720)-infected human gastric and pancreatic cancer cells. Thus, the M1 segment's 3' end tolerates the expression of the long iRFP720 gene, which may propel the development of recombinant MRV vectors for FGS.


Assuntos
Orthoreovirus de Mamíferos , Reoviridae , Animais , Humanos , Mamíferos/genética , Orthoreovirus de Mamíferos/genética , Plasmídeos , Reoviridae/genética , Transfecção
20.
Arch Virol ; 167(7): 1529-1545, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604502

RESUMO

During a surveillance study to monitor porcine epidemic diarrohoea virus and transmissible gastroenteritis virus in India, a total of 1043 swine samples including faeces (n = 264) and clotted blood (n = 779) were collected and tested. Five samples (four faecal and one serum) showed cytopathic effects in Vero cells. Transmission electron microscopy of infectious cell supernatant revealed the presence of two types of virions. Next-generation sequencing (de novo) allowed the complete genome sequence of mammalian orthorubulavirus 5 (MRuV5; 15246 bp) and that of all 10 gene segments of mammalian orthoreovirus to be determined. Genetic analysis of MRuV5 revealed grouping of the Indian MRuV5 with isolates from various mammalian species in South Korea and China, sharing more than 99% nucleotide sequence identity. The deduced amino acid sequences of the HN, NP, and F genes of MRuV5 isolates showed three (92L, 111R, 447H), two (86S, 121S), and two (139T, 246T) amino acid substitutions, respectively, compared to previously reported virus strains. Phylogenic analysis based on S1 gene sequences showed the Indian MRV isolates to be clustered in lineage IV of MRV type 3, with the highest nucleotide sequence identity (97.73%) to MRV3 strain ZJ2013, isolated from pigs in China. The protein encoded by the MRV3 S1 gene was found to contain the amino acid residues 198-204NLAIRLP, 249I, 340D, and 419E, which are known to be involved in sialic acid binding and neurotropism. This is the first report of co-isolation and whole-genomic characterisation of MRuV5 and MRV3 in domestic pigs in India. The present study lays a foundation for further surveillance studies and continuous monitoring of the emergence and spread of evolving viruses that might have pathogenic potential in animal and human hosts.


Assuntos
Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Vírus da Parainfluenza 5 , Infecções por Reoviridae , Animais , Chlorocebus aethiops , Genômica , Filogenia , Sus scrofa , Suínos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...